13 research outputs found

    Descrição de um surto de intoxicação por cianobactérias (algas verdes-azuis) em bovinos no Alentejo

    Get PDF
    Suspeita de hepatoxicidade provocada por cianotoxinas, num surto de morte sĂșbita em 25 bovinos numa exploração com 54 vacas de carne em AlmodĂŽvar, Alentejo.N/

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Get PDF
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.Peer reviewe

    Description of an outbreak of cattle intoxication by cyanobacteria (blue-green algae) in the South of Portugal

    No full text
    In 2017, 25 cows from a beef herd consisting of 54 healthy animals, with ages between 1.5 to 4 years old, from Aberdeen Angus breed x Charolais were found dead in AlmodĂŽvar, Alentejo, in the South of Portugal. They were grazing on a field of stubble for about 3 weeks when they broke the electric fence that bordered the field and had access to stagnant water from a small stream (Ribeira de Oeiras) that run across the herd. All the animals were seen healthy, by the keeper, until 12 a.m. of Sunday August 27th. When they were last observed before the occurrence, they were resting at the shade of trees and bushes surrounding the Oeiras stream. At this time of the year, this is a normal behaviour due to the high temperatures, and it is common for them to engage in grazing activities in the evening, when the temperature begins to decrease. On the next day (the 28th August), at 7 a.m., the keeper encountered 20 cadavers scattered throughout the land and 5 sick cows. The other 29 animals of the group did not show any clinical signs during the following weeks after the occurrence. In the same period, was reported the death of a heron in the Oeiras stream.N/

    First description of an outbreak of cattle intoxication by cyanobacteria (blue-green algae) in the South of Portugal

    Get PDF
    A herd of 53 Angus x Charolais crossbred cows and 1 herd bull grazing a stubble field broke through an electric fence, and gained access to stagnant water from a small river (Ribeira de Oeiras). In less than 19 hours, 20 cows died and 5 were sick with clinical signs of ataxia, recumbence, abdominal distension, opisthotonus, paddling and masticatory movements, frothing at the mouth, and bloody diarrhea. The 5 sick cows later died, and the remaining 29 animals remained healthy. Clinical and pathological findings revealed the presence of hepatic and renal necrosis. In the water samples, several cyanobacterial species were identified, predominantly belonging to the toxic genera Microcystis. Altogether, these observations led to a tentative diagnosis of acute hepatoxicity caused by cyanotoxins. The diagnosis was confirmed by detection of microcystin-LR in the kidney from 1 animal. To our knowledge, this is the first report of microcystin-LR animal poisoning in Portugal.info:eu-repo/semantics/publishedVersio

    Culture-Independent Study of the Late-Stage of a Bloom of the Toxic Dinoflagellate Ostreopsis cf. ovata: Preliminary Findings Suggest Genetic Differences at the Sub-Species Level and Allow ITS2 Structure Characterization

    No full text
    Available genomic data for the toxic, bloom-forming, benthic Ostreopsis spp. are traditionally obtained from isolates rather than from individuals originally present in environmental samples. Samples from the final phase of the first reported Ostreopsis bloom in European North Atlantic waters (Algarve, south coast of Portugal) were studied and characterized, using a culture-independent approach. In the first instance, a microscopy-based analysis revealed the intricate complexity of the samples. Then, we evaluated the adequacy of commonly used molecular tools (i.e., primers and nuclear ribosomal markers) for the study of Ostreopsis diversity in natural samples. A PCR-based methodology previously developed to identify/detect common Ostreopsis species was tested, including one new combination of existing PCR primers. Two sets of environmental rRNA sequences were obtained, one of them (1052 bp) with the newly tested primer set. These latter sequences encompass both the ITS1-5.8S-ITS2 region and the D1/D2 domain of the LSU rRNA gene, leading us to an accurate identification of ITS2. In turn, this allowed us to predict and show for the first time the ITS2 secondary structure of Ostreopsis. With 92 bp in length and a two-helix structure, the ITS2 of this genus revealed to be unique among the dinoflagellates. Both the PCR approach as the phylogenetic analyses allowed to place the Ostreopsis cells observed in the samples within the O. cf. ovata phylospecies’ complex, discarding the presence of O. cf. siamensis. The (phylo)genetic results point out a certain level of nucleotide sequence divergence, but were inconclusive in relation to a possible geographic origin of the O. cf. ovata population from the Algarve’s bloom

    Seasonal Dynamics of Microcystis spp. and Their Toxigenicity as Assessed by qPCR in a Temperate Reservoir

    Get PDF
    Blooms of toxic cyanobacteria are becoming increasingly frequent, mainly due to water quality degradation. This work applied qPCR as a tool for early warning of microcystin(MC)-producer cyanobacteria and risk assessment of water supplies. Specific marker genes for cyanobacteria, Microcystis and MC-producing Microcystis, were quantified to determine the genotypic composition of the natural Microcystis population. Correlations between limnological parameters, pH, water temperature, dissolved oxygen and conductivity and MC concentrations as well as Microcystis abundance were assessed. A negative significant correlation was observed between toxic (with mcy genes) to non-toxic (without mcy genes) genotypes ratio and the overall Microcystis density. The highest proportions of toxic Microcystis genotypes were found 4–6 weeks before and 8–10 weeks after the peak of the bloom, with the lowest being observed at its peak. These results suggest positive selection of non-toxic genotypes under favorable environmental growth conditions. Significant positive correlations could be found between quantity of toxic genotypes and MC concentration, suggesting that the method applied can be useful to predict potential MC toxicity risk. No significant correlation was found between the limnological parameters measured and MC concentrations or toxic genotypes proportions indicating that other abiotic and biotic factors should be governing MC production and toxic genotypes dynamics. The qPCR method here applied is useful to rapidly estimate the potential toxicity of environmental samples and so, it may contribute to the more efficient management of water use in eutrophic systems

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.Peer reviewe

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    No full text
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature
    corecore